高中數學集合知識總結(精選18篇)

來源:瑞文範文網 2.51W

高中數學集合知識總結 篇1

知識點概述

高中數學集合知識總結(精選18篇)

本節包括集合的概念、集合元素的特性、集合的表示方法、常見的特殊集合、集合的分類和集合間的基本關係等知識點,除了集合的表示方法中的描述法較難理解,其它的都多是好理解的知識,只需加強記憶。

知識點總結

方法:常用數軸或韋恩圖進行集合的交、並、補三種運算

1、包含關係子集

注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA

2、不含任何元素的集合叫做空集,記為

規定:空集是任何集合的子集,空集是任何非空集合的真子集

3、相等關係(55,且55,則5=5)

實例:設A={xx2—1=0}B={—11}元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就説集合A等於集合B,即:A=B

常見考點考法

集合是學習函數的基礎知識,在段考和大學聯考中是必考內容。在段考中多考查集合間的子集和真子集關係,在大學聯考中也是不可少的考查內容,多以選擇題和填空題的形式出現,經常出現在選擇填空題的前幾小題,難度不大。主要與函數和方程、不等式聯合考查的集合的表示方法和集合間的基本關係。

常見誤區提醒

1、集合的關係問題,有同學容易忽視空集這個特殊的集合,導致錯解。空集是任何集合的子集,是任何非空集合的真子集。

2、集合的運算要注意靈活運用韋恩圖和數軸,這實際上是數形結合的思想的具體運用。

3、集合的運算注意端點的取等問題。最好是直接代入原題檢驗。

4、集合中的元素具有確定性、互異性和無序性三個特徵,尤其是確定性和互異性。在解題中,要注意把握與運用,例如在解答含有參數問題時,千萬別忘了檢驗,否則很可能會因為不滿足互異性而導致結論錯誤。

高中數學集合知識總結 篇2

重點知識歸納、總結

(1)集合的分類

(2)集合的運算

①子集,真子集,非空子集;

②A∩B={∈A且x∈B}

③A∪B={∈A或x∈B}

④A={∈S且xA},其中AS.

2、不等式的解法

(1)含有絕對值的不等式的解法

①x0)-a

x>a(a>0)x>a,或x<-a.

②f(x)

f(x)>g(x)f(x)>g(x)或f(x)<-g(x).

③f(x)<g(x)[f(x)]2<[g(x)]2[f(x)+g(x)]·[f(x)-g(x)]<0.

④對於含有兩個或兩個以上的絕對值符號的絕對值不等式,利用“零點分段討論法”去絕對值.如解不等式:x+3-2x-1<3x+2.

3、簡易邏輯知識

邏輯聯結詞“或”、“且”、“非”是判斷簡單合題與複合命題的依據;真值表是由簡單命題和真假判斷複合命題真假的依據,理解好四種命題的關係,對判斷命題的真假有很大幫助;掌握好反證法證明問題的步驟。

(2)複合命題的真值表

非p形式複合命題的真假可以用下表表示.

p非p

真假

假真

p且q形式複合命題的真假可以用下表表示.

p或q形式複合命題的真假可以用下表表示.

(3)四種命題及其相互之間的關係

一個命題與它的逆否命題是等價的.

(4)充分、必要條件的判定

①若pq且qp,則p是q的充分不必要條件;

②若pq且qp,則p是q的必要不充分條件;

③若pq且qp,則p是q的充要條件;

④若pq且qp,則p是q的既不充分也不必要條件.

高中數學集合知識總結 篇3

一、集合間的關係

1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。

2.真子集:如果集合AB,但存在元素a∈B,且a不屬於A,則稱集合A是集合B的真子集。

3.集合相等:集合A與集合B中元素相同那麼就説集合A與集合B相等。

子集:一般地,對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就説集合A包含於集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含於B”(或“B包含A”),這時我們説集合是集合的子集,更多集合關係的知識點見集合間的基本關係

二、集合的運算

1.並集

並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作“A並B”(或“B並A”),即A∪B={x|x∈A,或x∈B}

2.交集

交集:以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

3.補集

三、高中數學集合知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N*

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)並集:A∪B={x|x∈A或x∈B}

5)補集:CUA={x|xA但x∈U}

注意:①?A,若A≠?,則?A;

②若,,則;

③若且,則A=B(等集)

3.弄清集合與元素、集合與集合的關係,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

4.有關子集的幾個等價關係

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、並集運算的性質

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

四、數學集合例題講解:

【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關係

A)M=NPB)MN=PC)MNPD)NPM

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}

對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急於判斷三個集合間的關係,應分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合,,則(B)

A.M=.

解:

當時,2k+1是奇數,k+2是整數,選B

【例2】定義集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

A)1B)2C)3D)4

分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個B)6個C)7個D)8個

變式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,

∴∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

綜合以上各式有B={x|-1≤x≤5}

變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3},∵M∩N=N,∴NM

①當時,ax-1=0無解,∴a=0②

綜①②得:所求集合為{-1,0,}

【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值範圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數分離求解。

解答:(1)若,在內有有解

令當時,

所以a>-4,所以a的取值範圍是

變式:若關於x的方程有實根,求實數a的取值範圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的'關鍵。

高中數學集合知識總結 篇4

複習的重點一是要掌握所有的知識點,二就是要大量的做題,編輯為各位考生帶來了高中數學知識點複習:集合與映射專題複習指導

一、集合與簡易邏輯

複習導引:這部分大學聯考題一般以選擇題與填空題出現。多數題並不是以集合內容為載體,只是用了集合的表示方法和簡單的交、並、補運算。這部分題其內容的載體涉及到函數、三角函數、不等式、排列組合等知識。複習這一部分特別請讀者注意第1題,闡述瞭如何審題,第3、5題的思考方法。簡易邏輯部分應把目光集中到充要條件上。

1.設集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含兩個元素的子集,且滿足:對任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示兩個數x、y中的較小者)。則k的最大值是

A.10B.11

C.12D.13

分析:審題是解題的源頭,數學審題訓練是對數學語言不斷加深理解的過程。以本題為例min{-,-}{-,-}如何解決?我們不妨把抽象問題具體化!

如Si={1,2},Sj={2,3}那麼min{-,2}為-,min{-,-}為-,Si是Sj符合題目要求的兩個集合。若Sj={2,4}則與Si={2,4}按題目要求應是同一個集合。

題意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按題目要求是4個集合。M是6個元素構成的集合,含有2個元素組成的集合是C62=15個,去掉4個,滿足條件的集合有11個,故選B。

注:把抽象問題具體化是理解數學語言,準確抓住題意的捷徑。

2.設I為全集,S1、S2、S3是I的三個非空子集,且S1S3=I,則下面論斷正確的是

(A)CIS1(S2S3)=

(B)S1(CIS2CIS3)

(C)CIS1CIS2CIS3=

(D)S1(CIS2CIS3)

分析:這個問題涉及到集合的交、並、補運算。我們在複習集合部分時,應讓同學掌握如下的定律:

摩根公式

CIACIB=CI(AB)

CIACIB=CI(AB)

這樣,選項C中:

CIS1CIS2CIS3

=CI(S1S3)

由已知

S1S3=I

即CI(S1S3)=CI=

而上面的定律並不是複習中硬加上的,這個定律是教材練習一道習題的引申。所以,大學聯考複習源於教材,高於教材。

這道題的解決,也可用特殊值法,如可設S1={1,2},S2={1,3},S3={1,4}問題也不難解決。

3.是正實數,設S={|f(x)=cos[(x+])是奇函數},若對每個實數a,S(a,a+1)的元素不超過2個,且有a使S(a,a+1)含2個元素,則的取值範圍是。

解:由f(x)=cos[(x+)]是奇函數,可得cosxcos=0,cosx不恆為0,

cos=0,=k+-,kZ

又0,=-(k+-)

(a,a+1)的區間長度為1,在此區間內有且僅有兩個角,兩個角之差為:-(k1+k2)

不妨設k0,kZ:

兩個相鄰角之差為-。

若在區間(a,a+1)內僅有二角,那麼-2,2。

注:這是集合與三角函數綜合題。

對應於一組,正如在數學原始概念。我們知道,有個和數字線之間真正的對應關係,點的實數的平面座標,並下令一名男子與他的名字,一個學生,他的學校,可以看作是對應關係。

對應的是兩個集合A和B.A

之間的關係對於每一個元素,有以下三種情況:

比索(1)B有相應的唯一元素。

(2)B,有對應的一個以上的元素。

(3)B是沒有相應的元件。

同樣,對於B中的每一個元素而言,有以下三種情況:

在相應的獨特元素。

比索(5),有相應的多個元素。

比索(6)沒有相應的元素。

相當於在一般情況下,這些情況都可能發生。

【2】映射

映射是一種特殊的對應關係,學習這個定義時,應注意以下幾點:

比索(1)映射為對應的集合從A,B和從A到BF由法律決定。

(2)中的映射,設置一個“任何元素”有“才”在集合B這不是集合A的元素在集合B中存在的沒有,或者案件多於一個的對象(即,將不會在上述(2)(3)在這兩種情況下)。

比索(3)在地圖上,設置一個狀態和B是不平等的。在一般情況下,我們並不要求B的兩個元素之間的映射和A是對應於(間的(4)(5)(6)三種情況下都可能發生,即對應)的唯一元素。因此,從映射A到B並從B到A被映射有不同的要求。A的收集,B可以是相同的集合。

彷彿原始圖像是一個映射f,從A到B,那麼A和B在圖像B中的對應元素的元素稱為,原來的名字圖像b的關係可以表示為B=F(A),與原圖像的概念和類似物,該映射可以被理解為“A中的每個元素有B中一個獨特的圖像”對應於這樣一個特殊的。由於映射在一般情況下,B,作為元件不一定如此,因為該組(即由所有的圖像形成的集合)是B的子集,記為{F(A)|a∈A}IB。

高中數學集合知識總結 篇5

1.“包含”關係—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關係(5≥5,且5≤5,則5=5)

實例:設A={2-1=0}B={-1,1}“元素相同”

結論:對於兩個集合A與B,如果集合A的`任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就説集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就説集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集

高中數學集合知識總結 篇6

直線的傾斜角:

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

直線的斜率:

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式。

注意:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的座標直接求得;

(4)求直線的傾斜角可由直線上兩點的座標先求斜率得到。

直線方程:

1.點斜式:y-y0=k(x-x0)

(x0,y0)是直線所通過的已知點的座標,k是直線的已知斜率。x是自變量,直線上任意一點的橫座標;y是因變量,直線上任意一點的縱座標。

2.斜截式:y=kx+b

直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似於一次函數的表達式。

3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

如果x1=x2,y1=y2,那麼兩點就重合了,相當於只有一個已知點了,這樣不能確定一條直線。

如果x1=x2,y1y2,那麼此直線就是垂直於X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那麼此直線就是垂直於Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

4.截距式x/a+y/b=1

對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;Ax+By+C=0

將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

高中數學集合知識總結 篇7

(一)導數第一定義

設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第一定義

(二)導數第二定義

設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第二定義

(三)導函數與導數

如果函數 y = f(x) 在開區間 I 內每一點都可導,就稱函數f(x)在區間 I 內可導。這時函數 y = f(x) 對於區間 I 內的每一個確定的 x 值,都對應着一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數 y = f(x) 的導函數,記作 y', f'(x), dy/dx, df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f(x)

(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f(x)0的解集與定義域的交集的對應區間為增區間; f(x)”、小於號“,≥,≤,≠)連接的式子叫做不等式。

通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

數學知識點1、不等式性質比較大小方法:

(1)作差比較法(2)作商比較法

不等式的基本性質

①對稱性:a > b,b > a

②傳遞性:a > b,b > ca > c

③可加性:a > b a + c > b + c

④可積性:a > b,c > 0,ac > bc

⑤加法法則:a > b,c > d,a + c > b + d

⑥乘法法則:a > b > 0,c > d > 0,ac > bd

⑦乘方法則:a > b > 0,an > bn(n∈N)

⑧開方法則:a > b > 0

數學知識點2、算術平均數與幾何平均數定理:

(1)如果a、b∈R,那麼a2 + b2 ≥2ab;(當且僅當a=b時等號)

(2)如果a、b∈R+,那麼(當且僅當a=b時等號)推廣:

如果為實數,則重要結論

(1)如果積xy是定值P,那麼當x=y時,和x+y有最小值2;

(2)如果和x+y是定值S,那麼當x=y時,和xy有最大值S2/4。

數學知識點3、證明不等式的常用方法:

比較法:比較法是最基本、最重要的方法。

當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。

綜合法:從已知或已證明過的不等式出發,根據不等式的性質推導出欲證的不等式。綜合法的放縮經常用到均值不等式。

分析法:不等式兩邊的聯繫不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。

高中數學集合知識總結 篇8

一、直線與方程大學聯考考試內容及考試要求:

考試內容:

1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

考試要求:

1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,並能根據條件熟練地求出直線方程;

2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據直線的方程判斷兩條直線的位置關係;

二、直線與方程

課標要求:

1.在平面直角座標系中,結合具體圖形,探索確定直線位置的幾何要素

2.理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

3.根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關係;

4.會用代數的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關係,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

要點精講:

1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸平行或重合時,規定α= 0°.

傾斜角α的取值範圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

(1)當直線l與x軸平行或重合時,α=0°,k = tan0°=0;

(2)當直線l與x軸垂直時,α= 90°,k 不存在。

由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

(若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

4.兩條直線的平行與垂直的判定

(1)若l1,l2均存在斜率且不重合:

①;②

注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論並不成立。

(2)

若A1、A2、B1、B2都不為零。

注意:若A2或B2中含有字母,應注意討論字母=0與0的情況。

兩條直線的交點:兩條直線的交點的個數取決於這兩條直線的方程組成的方程組的解的個數。

5.直線方程的五種形式

確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用範圍。

直線的點斜式與斜截式不能表示斜率不存在(垂直於x 軸)的直線;兩點式不能表示平行或重合兩座標軸的直線;截距式不能表示平行或重合兩座標軸的直線及過原點的直線。

6.直線的交點座標與距離公式

(1)兩直線的交點座標

一般地,將兩條直線的方程聯立,得方程組

若方程組有唯一解,則兩條直線相交,解即為交點的座標;若方程組無解,則兩條直線無公共點,此時兩條直線平行。

(2)兩點間距離

兩點P1(x1,y1),P2(x2,y2)間的距離公式

特別地:軸,則、軸,則

(3)點到直線的距離公式

點到直線的距離為:

(4)兩平行線間的距離公式:

若,則:

注意點:x,y對應項係數應相等。

高中數學集合知識總結 篇9

一、求導數的方法

(1)基本求導公式

(2)導數的四則運算

(3)複合函數的導數

設在點x處可導,y=在點處可導,則複合函數在點x處可導,且即

二、關於極限

1、數列的極限:

粗略地説,就是當數列的項n無限增大時,數列的項無限趨向於A,這就是數列極限的描述性定義。記作:=A。如:

2、函數的極限:

當自變量x無限趨近於常數時,如果函數無限趨近於一個常數,就説當x趨近於時,函數的極限是,記作

三、導數的概念

1、在處的導數。

2、在的導數。

3。函數在點處的導數的幾何意義:

函數在點處的導數是曲線在處的切線的斜率,

即k=,相應的切線方程是

注:函數的導函數在時的函數值,就是在處的導數。

例、若=2,則=A—1B—2C1D

四、導數的綜合運用

(一)曲線的切線

函數y=f(x)在點處的導數,就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數求曲線的切線方程。具體求法分兩步:

(1)求出函數y=f(x)在點處的導數,即曲線y=f(x)在點處的切線的斜率k=

(2)在已知切點座標和切線斜率的條件下,求得切線方程為x。

高中數學集合知識總結 篇10

(一)導數第一定義

設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第一定義

(二)導數第二定義

設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第二定義

(三)導函數與導數

如果函數 y = f(x) 在開區間 I 內每一點都可導,就稱函數f(x)在區間 I 內可導。這時函數 y = f(x) 對於區間 I 內的每一個確定的 x 值,都對應着一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數 y = f(x) 的導函數,記作 y', f'(x), dy/dx, df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f(x)

(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f(x)

(2)f(x)>0的解集與定義域的交集的對應區間為增區間; f(x)<0的解集與定義域的交集的對應區間為減區間

學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。

高中數學集合知識總結 篇11

一、高中數列基本公式:

1、一般數列的通項an與前n項和Sn的關係:an=

2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3、等差數列的前n項和公式:Sn=

Sn=

Sn=

當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

4、等比數列的通項公式: an= a1qn-1an= akqn-k

(其中a1為首項、ak為已知的第k項,an≠0)

5、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);

當q≠1時,Sn=

Sn=

二、高中數學中有關等差、等比數列的結論

1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。

2、等差數列{an}中,若m+n=p+q,則

3、等比數列{an}中,若m+n=p+q,則

4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。

5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。

6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。

7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。

8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。

9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d

10、三個數成等比數列的設法:a/q,a,aq;

四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)

高中數學集合知識總結 篇12

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1)元素的確定性;

2)元素的互異性;

3)元素的無序性。

説明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

2)集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就説a屬於集合A記作a∈A,相反,a不屬於集合A記作a:A。

列舉法:把集合中的元素一一列舉出來,然後用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1)有限集含有有限個元素的集合。

2)無限集含有無限個元素的集合。

3)空集不含任何元素的集合例:{x|x2=—5}。

二、集合間的基本關係

1、“包含”關係子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA。

2、“相等”關係(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—11}“元素相同”

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就説集合A等於集合B,即:A=B。

①任何一個集合是它本身的子集。AA

②真子集:如果A?B且A?B那就説集合A是集合B的真子集,記作AB(或BA)

③如果ABBC那麼AC

④如果AB同時BA那麼A=B

3、不含任何元素的集合叫做空集,記為Φ。

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運算

1、交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集。

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}。

3、交集與並集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

記作:CSA即CSA={x?x?S且x?A}。

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高中數學集合知識總結 篇13

中數學組在20xx年的工作在學校工作思路的指導下,認真貫徹落實課改精神,以人為本,以促進學生髮展、教師成長為目的。以教法探索為重點,努力提高課堂效益和教學質量;以組風建設為主線積極探索教研組建設和教師專業發展的有效途徑。不斷總結經驗,發揮優勢,改進不足,集全組教師的創造力,努力使雅安中學高中數學教研組在有朝氣、有創新精神、團結奮進的基礎上煥發出新的生機與活力。

在工作中,我們充分發揮一個“核心”的表率作用,狠抓“兩條線”的深入研究,積極促進“三個團隊”主動參與和建設,從而使我組的研究工作和諧、高效地開展。

一個核心:是指我組內具有良好思想素質、過硬的業務能力、踏實的工作作風和不斷進取精神的教學骨幹們。充分發揮核心成員的聰明才智,在做好本職工作的前提下,依據他們的特長,或上示範課,或開講座,或主持集體備課,帶頭參與教學理論和具體教學實際的研究,使核心成員們的各類資源做到組內共享。

二條線:是指對教育教學的理論學習研究和具體課堂教學的研究兩個方面。要不斷提高教學質量,關鍵在於要有一批思想新、能力強,具有較高理論修養的教學隊伍,因此,要打造一批科研型的教師,從而實現科研興校,個性強校,特色活校的策略。為此,教研組經常組織全組教師認真學習新的教育教學理論和先進的教學方法,不斷豐富教師們的理論水平。具備了較先進的教育理論並且具備了較新的教學觀念,則需要運用於具體的教學實踐之中,並在實踐中找出符合自己實際的教學法,如何找準切入點,切實有助於教學質量的提高,這也是我們教研工作重點關注的目標之一,教研就應在具體的教學中研究,邊教邊研,在研中促進教學水平的提高。為此,近幾年來圍繞着一個國家級課題和二個省級課展開了行之有效的研究工作,除進行必要的理論學習和研究外,經常進行公開教學研究課,教學探討課,並常請教育專家蒞臨指導工作,從而使我組的教學研究工作落在實處。

三個團隊:是指年級備課組、科研課題組和師徒組合羣。在教研組的統一計劃下,各年級備課組均有自己的教學計劃,有健全的集體備課制度,每次活動均做到“四定”,即:定時間、定地點、定內容、定主講人(上課人),在平時的教學活動中,督促教師做到“教學六認真”。科研課題組則以三個課題為龍頭,開展較為深入的教學研究,其中一課題已結題,另外兩個課題已取得階段性成果。為使青年教師儘快成才,充分發揮“核心”的作用,我組每一個青年教師均拜德藝皆高老教師為師,這樣師徒之間的研究活動經常進行,老教師的經驗為年青人所借鑑使用,反過來,青年教師的闖勁又促使老教師青春煥發,新老相得益彰。我組教師在完成本職工作之餘,不計份內份外,積極參與各級各類教研活動,將自己的研究成果無私地貢獻給同行。

高中數學集合知識總結 篇14

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)0的解集與定義域的交集的對應區間為增區間;f¢(x)2的解集是{x?R|x-3>2}或{x|x-3>2}

4、集合的分類:

1.有限集含有有限個元素的集合

2.無限集含有無限個元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關係

1.“包含”關係子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA

2.“相等”關係(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-11}“元素相同”

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就説集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。A?A

②真子集:如果A?B且A?B那就説集合A是集合B的真子集,記作AB(或BA)

③如果A?BB?C那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

A∪φ=AA∪B=B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

記作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

高中數學集合知識總結 篇15

(1)不等關係

感受在現實世界和日常生活中存在着大量的不等關係,瞭解不等式(組)的實際背景。

(2)一元二次不等式

①經歷從實際情境中抽象出一元二次不等式模型的過程。

②通過函數圖象瞭解一元二次不等式與相應函數、方程的聯繫。

③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

(3)二元一次不等式組與簡單線性規劃問題

①從實際情境中抽象出二元一次不等式組。

②瞭解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見例2)。

③從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決(參見例3)。

(4)基本不等式

①探索並瞭解基本不等式的證明過程。

②會用基本不等式解決簡單的(小)值問題。

高中數學集合知識總結 篇16

★高中數學導數知識點

一、早期導數概念————特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函數極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)—f(A),發現的因子E就是我們所説的導數f(A)。

二、17世紀————廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變量為流量稱變量的變化率為流數相當於我們所説的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在於一個變量的函數而不在於多變量的方程在於自變量的變化與函數的變化的比的構成最在於決定這個比當變化趨於零時的極限。

三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關於導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函數y=f(x)在變量x的兩個給定的界限之間保持連續並且我們為這樣的變量指定一個包含在這兩個不同界限之間的值那麼是使變量得到一個無窮小增量。19世紀60年代以後魏爾斯特拉斯創造了ε—δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。

四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年後來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題後來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。

高中數學導數要點

1、求函數的單調性:

利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值範圍):設函數yf(x)在區間(a,b)內可導,

(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成立。

2、求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的

變化情況:

(4)檢查f(x)的符號並由表格判斷極值。

3、求函數的最大值與最小值:

如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的最大值。函數在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。

求函數f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。

4、解決不等式的有關問題:

(1)不等式恆成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恆成立的充要條件是f(x)max0,即b0;

不等式f(x)0恆成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

5、導數在實際生活中的應用:

實際生活求解最大(小)值問題,通常都可轉化為函數的最值。在利用導數來求函數最值時,一定要注意,極值點唯一的單峯函數,極值點就是最值點,在解題時要加以説明。

高中數學集合知識總結 篇17

1.等比中項

如果在a與b中間插入一個數G,使a,G,b成等比數列,那麼G叫做a與b的等比中項。

有關係:

注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

2.等比數列通項公式

an=a1_q’(n-1)(其中首項是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n項和

當q≠1時,等比數列的前n項和的公式為

Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

當q=1時,等比數列的前n項和的公式為

Sn=na1

3.等比數列前n項和與通項的關係

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比數列性質

(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

(2)在等比數列中,依次每k項之和仍成等比數列。

(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底指數冪後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們説:一個正項等比數列與等差數列是“同構”的。

(5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

(6)任意兩項am,an的關係為an=am·q’(n-m)

(7)在等比數列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

高中數學集合知識總結 篇18

等比數列求和公式

q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

q=1時,Sn=na1

(a1為首項,an為第n項,d為公差,q為等比)

這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。注:q=1時,{an}為常數列。利用等比數列求和公式可以快速的計算出該數列的和。

等比數列求和公式推導

Sn=a1+a2+a3+...+an(公比為q)

qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)

Sn-qSn=(1-q)Sn=a1-a(n+1)

a(n+1)=a1qn

Sn=a1(1-qn)/(1-q)(q≠1)

熱門標籤